NFL investigating Giants for using two-way radio during game against Cowboys

Apparently using a two way radio during an American football game is frowned upon over in the good old US of A, This article is about a game between the Giants and the Cowboys. During a Game the coaching staff and Quarterback are not allowed to communicate if there is 15 seconds or less on the clock, this rule might have been broken with the use of a walkie talkie.

The NFL is investigating the Giants’ potentially rule-breaking use of a two-way radio during the team’s recent 10-7 win over the Dallas Cowboys.

The use of a two-way radio by a coach during a game is strictly against league rules, according to ESPN.

In the fourth quarter of the Cowboys game, Giants head coach Ben McAdoo was spotted using a walkie-talkie to communicate play calls with Eli Manning after his headset malfunctioned.

In the fourth quarter of the game, Giants head coach Ben McAdoo was spotted using a walkie-talkie to communicate play calls with Eli Manning after his headset malfunctioned.

The Cowboys issued a formal complaint to the league over the radio use, but the NFL’s investigation was already underway by the time Dallas contacted them.

The NFL has a rule against coaches using two-way handheld radios because the league cannot control when both parties are communicating.

A coach using a walkie-talkie makes it harder for the NFL to monitor a league rule that states communication from the sideline to the quarterback must end when 15 seconds are left on the play clock.

With headsets, the NFL has the power to shut off communication at will with a “cutoff switch operator,” ESPN reported.

The Giants had no comment when reached Thursday night.

McAdoo used the walkie talkie in question, however, for about four or five plays on the Giants’ fourth-quarter drive that ended in an Eli Manning interception on a pass intended for Victor Cruz.

McAdoo’s normal equipment malfunctioned and as the Giants worked to fix it, the coach was handed the walkie talkie temporarily because its signal was reaching Manning’s helmet.

As the Giants worked to correct McAdoo’s equipment, Odell Beckham Jr. could be seen running to the sideline to bring plays back to the huddle and Manning was heading over to the sideline, as well.

There is no evidence in reviewing the game film that demonstrates McAdoo was on the walkie talkie for longer than the allowed 15 seconds of communication with his quarterback.

There is also, of course, no evidence that the Giants gained any advantage even if he was. The drive ended in a turnover and the Giants’ offense stunk most of the night.

The arrival of 5G, cognitive radio and the future of connectivity

We are very excited about 5G, we have already reported on how the UK emergency services are moving over to a LTE network, and inevitably 5G is the next step for better, faster and more capable communications.  Not planned to be deployed until the next decade, we believe that 5G will allow us to communicate better with our Walkie talkies. The original article can be found here.

With faster and more reliable connections, we look at what the next generation of communications could mean for business

From smart cities to the internet of things (IoT), virtually every aspect of the modern world is becoming closely connected.

The extent to which we rely on our devices and the exchange of information means new systems are needed that not only handle far greater bandwidth, but that are capable of being deployed to cover areas that were previously unreachable.

The potential benefits for business are huge, with faster and more reliable connectivity not only enhancing how firms interact with customers and each other, but also lending itself to greater flexible working among staff.

The arrival of 5G

One development that many industry observers believe could be revolutionary is 5G. Following on from 4G, the fifth-generation mobile network is in its early stages of development and is expected to be rolled out between 2020–25.

Any tech that contributes towards the next phase of mobile connectivity is covered by the term 5G. And although there are still no set standards or specifications, the GSMA – a trade body that represents global mobile operators – has outlined eight key criteria, stipulating minimum requirements for speed, capacity and energy in order for something to be considered 5G.

According to Ofcom, once operational 5G could provide between 10–50 Gbps (gigabit per seconds) in download speeds (as compared to the 5–12 Gbps of 4G), and although most experts expect it to be at the lower end of the range, that would still mean you could download an HD movie in seconds.

But rather than simply being faster than the current 4G, it will also allow more devices to access the web – an essential requirement if the IoT is to take off – meaning it could be transformative for business.

Raj Sivalingam, executive director of telecoms for techUK, the trade association for the tech sector, says: “The potential of the IoT, particularly in the enterprise environment, has been hugely debated but its impact is almost certainly still undervalued.

“Mass deployment across sectors will boost efficiency and safety with pre-emptive fault correction; enable automatic reporting of accidents and allow real-time asset tracking, reducing crime and increasing productivity, to name just a few benefits.”

One potential bottleneck for 5G is spectrum availability – or lack of it. Radio frequencies for both 3G and 4G are already overcrowded. The provision of a new bandwidth will require widespread cooperation between operators, manufacturers and governments.

Infrastructure is also an issue, says Sivalingam. “Making the leap to 5G mobile services and getting more fibre into the fixed telecommunications networks will require substantial amounts of investment.

“We need the government and industry stakeholders to work to shift the UK from good levels of connectivity to great levels so that we continue to attract investors and startups, and to foster innovation from within the UK.”

Cognitive radio

One possible solution is cognitive radio. An adaptive radio and network technology, it can sense and respond to its operating environment and automatically tune itself to the best available frequencies, this makes it more reliable in extreme locations where signals are weak, potentially providing dependable, robust connections that are not hampered by interference or geography.

Finland-based KNL Networks has developed a system using the technology that uses short wave radio to transmit internet access to sites in remote locations ranging from oil rigs to polar research stations. KNL Networks CEO Toni Linden says: “We can provide similar connectivity to those from satellites but with a terrestrial radio system. Our radios receive the whole spectrum all the time, so rather than scanning, real-time broadband receiving is going on. Thus we can see and measure everything that’s going on in the spectrum and we can maintain the network connectivity that way.”

The tech opens up the possibility of providing seamless connectivity anywhere, giving business reliable online access to markets in parts of the world that have otherwise been unreachable. It could also enable media and other companies to broadcast without the need for expensive satellites.

Quantum key distribution

It’s not just data transmission, speeds and connectivity that pose challenges in the future, but the safety of that data too. Cybercrime is ranked alongside terrorism as among the most serious threats to the UK [pdf], and with data now the lifeblood of modern business, securing that data is of paramount concern. One technology that could provide the answer is quantum communications.

Conventional encryption relies on sending a decryption key alongside your secret data. The receiver then uses that key to decode your secret information. But problems arise because hackers can also copy this key and steal your data.

Quantum key distribution (QKD) is different because it encodes this key on light particles called photons, and an underlying principle of quantum mechanics means that a hacker trying to read or copy such a key would automatically alter its state, effectively leaving a hacker fingerprint so the sender and receiver know their information security had been breached.

China recently launched a quantum satellite to further research into this technology, with the hope of developing an uncrackable communications network.

In the UK, the Quantum Communications Hub is part of a national network of four hubs led by the universities of Birmingham, Glasgow, Oxford and York. Director Tim Spiller says: “We are developing quantum communications technologies along a number of different directions, notably short-range free space QKD, where the transmitter could be in future mobile phones, and chip-to-chip QKD through optical fibre, where the chips could be in future computers and other devices.”

With two thirds of British business falling victim to cybercrime in the past year the need for better encryption is clear.

Several companies currently offer commercial quantum key distribution systems include ID Quantique, MagiQ Technologies, QuintessenceLabs, SeQureNet and Toshiba, although its high cost and limited range means mainly banks and governments are its main users, with mainstream adoption still some way off.

Spiller added: “Certainly it would be desirable to improve the size, weight, power and cost points of current technologies and our work in the hub and elsewhere is addressing all these factors.”

Paul Lee, head of technology, media, and telecommunications research at Deloitte, highlighted a number of improvements which he expected to see coming down the line, including improved mobile antennae and base stations, as well as improvements to fixed networks such as G.fast that would enable copper cable to operate at much higher speeds.

“As they get steadily faster, new services emerge to exploit these greater speeds, which then requires the deployment of even faster networks. This tail chasing has been going on for decades and won’t stop in 2017.”

Far offshore windfarms present communications challenges

This is an interesting article debating the different types of communication that can be used over a long distance, and as they distance moves further and further, the different types of communication drop off or become part of an infrastructure. As engineers battle with this problem, knowledge of how radio frequencies and applications becomes paramount.

As offshore windfarms are built further and further from land, alternatives to conventional VHF communications are going to be required

A cornerstone of any major project is clear communication between all parties. As we move windfarm construction further offshore, maintaining efficient voice and data communications becomes essential. With many projects now being constructed beyond the range of VHF radio and cellular telephone, such as a Gemini or Dudgeon offshore windfarms, crew transfer vessel (CTV) operators and their clients are experiencing challenges achieving practical and affordable offshore communications. My experience on two far offshore projects in the last 15 months has shown that creative thinking can work together with existing equipment such as TETRA radio to reduce the risks and stress that poor communications can generate.

Communication solutions on offshore windfarms depend on the phase that the operation is in, the size of the project and the distance from shore. Many smaller, older windfarms rely on VHF radios to communicate between shore and vessel and shore/vessel and work team on the turbines. However, VHF is limited in range being a line-of-sight system, and the signal has trouble penetrating structures such as wind turbines due to the Faraday cage effect. Conventional cellular telephone coverage is also possible on nearshore sites, with some windfarms installing a cellular mast within the windfarm. Vessels at anchor off the Dutch port of IJmuiden can thank the windfarm industry for good connection when waiting for a pilot if they have contracts with the provider KPN.

When moving further offshore, luxuries such as a cellular mast will not be installed during the construction phase, and it is most likely that VHF radios will not be sufficient. It is common for the developer to install a TETRA radio network – similar to those used by national emergency response services such as police and fire departments.

TETRA, or terrestrial trunked radio as it is properly termed, is a secure network allowing one-to-one, one-to-many and many-to-many communications. This means that the marine controller can speak directly and privately to one party or to the entire offshore spread depending on what is needed. It transmits on a lower frequency than VHF so covers a greater range. This still is not enough to cover the distances experienced on far offshore windfarms. If multiple base stations are used, each base station can then automatically rebroadcast a message thus expanding the network coverage. On a recent construction project, it was found that there were communications blackspots in the area of the sea passage from the base port to the site. This was later eliminated by fitting full base station units rather than just handheld transceivers on the CTVs. The CTVs then became vital links in the communications network and ensured the blackspots were reduced or eliminated altogether.

TETRA has many other advantages, including the ability to penetrate the tower of a wind turbine, and calls are not dropped when moving between base station carriers due to the network configuration. This is especially important if vessel-carried base stations are relaying far offshore. The network is also secure, which ensures that commercially sensitive information cannot be intercepted. With the one-to-one mode, it also means that managers can have detailed conversations on sensitive subjects.

However, anecdotal information received from vessel crews in the field appear to indicate that TETRA, although a good system, is not foolproof. One vessel master reported that, after 15 months on site, they still had blackspots with TETRA and sometimes have to use the cell phone application WhatsApp to request that turbines be started or stopped so that he can land a team.

TETRA does not solve the operational problems experienced by vessel-operating companies who require frequent voice and data communication with the CTVs to ensure a smooth delivery of service. As most sites far offshore are outside of cell phone coverage and clients demand that daily reports are issued on time, creativity is needed. There is a simple solution that could solve all of the communication problems far offshore – installing VSAT satellite communications on each CTV, which allows instant telephone and data transfer.

However, the practicalities of chartering in today’s windfarm industry eliminates this option, as the client will not want to pay for installation and operation, and a vessel owner cannot afford such a luxury. Charterers therefore need to make a decision: either they assume responsibility and the costs for practical workable satellite communications on their vessels or look for practical alternative solutions to deliver what is needed far offshore.

One practical solution to maintain communications between the marine co-ordination centre and vessels is to step back a generation and use medium frequency/high frequency single side band radios, which are common equipment on larger CTVs and is standard on service operation vessels (SOVs) or installation vessels.

When used in conjunction with the digital selective calling (DSC) function of the GMDSS standard, voice communications can be maintained at long distance without operating cost. Unfortunately, current guidance for the marine co-ordination in windfarms as found in the G9 Good practice guideline: The safe management of small service vessels used in the offshore wind industry does not yet consider marine co-ordination and communications in far offshore windfarms.

Another practical solution to improve data communication is to install powerful WiFi antennas on the decks of SOVs and other major offshore assets to allow CTVs to have internet access when they are in close proximity. CTVs can then download passenger manifests and weather reports and upload the daily progress report and synchronise planned maintenance and email systems.

CTVs spend considerable time in close proximity to the SOV during passenger transfer, bunkering or waiting for the next assignment, and it is relatively easy to set up the computers to connect and synchronise without operator input, thus reducing the risk of distraction. SOVs should be designed with space for CTV crews to use as a secure office so that laptops can be left connected to the network. In this way, crews can have two computers and prepare work when on shift, transfer via a data stick and upload when they go off shift.

One of the most effective tools that we have identified is WhatsApp, which seems to require very low signal strength to connect and transfer brief messages. On recent projects, we have found that most vessel/office communication occurs in this medium, including fault finding and incident reporting and investigation. Crews have found it quicker to video a CCTV system playback and send via WhatsApp than download the CCTV video and send it via a file transfer service. As synchronising an electronic planned maintenance system offshore is very time consuming, our superintendents have taken to sending the worklists via WhatsApp to the vessels who then confirm back with text or images when a job is complete. The superintendent then does the PMS administration from their office with the advantage of high speed network connections. Experience with WhatsApp has led me to believe that agile, low data applications will form part of the future of offshore communication.

Far offshore projects have moved from planning and dreaming to reality. However, effective and cost-efficient communication solutions have not moved with them. Like most challenges with far offshore windfarms, there is no single solution, but experience has shown that, with creativity and flexibility, projects can communicate with their teams and operators can manage their vessels.

Better equipment earlier on in the construction phase, such as MF/HF radios in the MCC and on the vessels, TERA base stations on the vessels and open deck WiFi on construction assets will all assist in improving safety and reducing stress while ensuring that unnecessary costs are not incurred.

Army to Launch Another Competition for New Soldier Radio

In the modern world the army has to have perfect communications, from coordinating attacks to communicating with other platoons, on the battlefield it really could mean the difference between life and death. This article plans to find the next Military radio.

U.S. Army tactical radio officials plan to launch a competition for a new handheld radio next year that would give soldiers twice the capability of the current Rifleman Radio.

The Army currently uses the single-channel AN/PRC 154A Rifleman Radio as its soldier handheld data radio. It runs the Soldier Radio Waveform, which small-unit leaders use to download and transmit maps, images and texts to fellow infantry soldiers in a tactical environment.

If they want to talk to each other, they often rely on another single-channel handheld — the AN/PRC 148 MultiBand Inter/Intra Team Radio, or MBITR, which runs the Single Channel Ground and Airborne Radio, or SINCGARS, for voice communications.

The Army plans to release a request-for-proposal in 2017 for a two-channel radio that will allow soldiers to run the Soldier Radio Waveform, or SRW, for data and SINCGARS for voice on one radio, according to Col. James P. Ross, who runs Project Manager Tactical Radios.

The change will mean that soldiers will no longer need the 148 MBITR and be able to rely on the new, two-channel radio for both data and voice communications, Ross said.

“We know industry can meet our requirements. … We know it’s achievable,” he said.

The move represents a change in strategy for the Army since the service awarded contracts in 2015 to Harris Corporation and Thales for a next-generation version of the Rifleman Radio.

“We went out with a competition for the next generation of the [Rifleman Radio]. Two companies, Harris and Thales, competed,” Ross said. “We went through testing, and we were on the verge of being able to buy more of them when the Army said, ‘Our strategy now is two-channel.’ ”

The Army had planned an initial buy of about 4,000 Thales AN/PRC-154B(V)1 radios and Harris AN/PRC-159(V)1 radios, according to Army program documents for fiscal 2015.

“We will not be taking action on those,” Ross said.

The current Rifleman Radio was developed as part of the Handheld, Manpack, Small Form Fit, or HMS program. HMS radios are designed around the Army’s tactical network strategy to create secure tactical networks without the logistical nightmare of a tower-based antenna infrastructure.

It’s also a key part of the Army’s Nett Warrior system. It hooks into an Android-based smartphone and gives soldiers in infantry brigade combat teams the ability to send and receive emails, view maps and watch icons on a digital map that represent the locations of their fellow soldiers. The concept came out of the Army’s long-gestating Land Warrior program.

The Army purchased about 21,000 Rifleman Radios under low-rate initial production between 2012 and 2015.

Army officials maintain that are enough single-channel, handheld radios already produced under the low rate initial production that are sitting waiting to be fielded. The service plans to field another two brigade combat teams per year with the single-channel Rifleman Radios through 2019.

The Army will conduct testing of two-channel radios in 2017 and early 2018 and then down-select to one or two vendors sometime in 2018, Ross said. Operational testing is scheduled for 2019 and fielding will begin in 2020 if all goes as planned, he added.

For now, the Army intends to field four BCTs a year with two-channel handheld radios, Ross said.

Small-unit leaders would then be able to retire the MBITR radio from their kit — a weight savings of about three pounds, according to Army officials at Program Executive Office Soldier.

“One thing the PEO Soldier is very passionate about is weight — driving that weight down that the soldier carries,” said Lt. Col. Derek Bird, product manager for Ground Soldier Systems, which helps oversee the Nett Warrior program.

“If we can cut three pounds off a soldier by taking two radios and shrinking it to one … that is a big deal.”

what to look for when buying a headset

Closed Back Headphones vs. Open-back Headphones

Open-back headphones have pads which rest on the outer ear. They’re designed such that the outer shell of the ear cup has perforations usually with horizontal cutouts. The Open back headphones design of the ear cup enhances better natural sound because of less coloration as compared to the Closed back headphones.

Closed back headphones have much larger earpads which encircle the ears. They are designed such that there’s a big pad which cups the ears, and it features an insulated outer shell of plastic which covers the ears. The Closed back headphones actually have a very solid outer shell which doesn’t have any sort of perforations such that the outer shell effectively cups/encircles the entire ear. The Closed back headphones are excellent at isolating noise. They block most of the ambient noise, but they’ve a smaller sound stage, which gives the user the perception that the audio/sound is originating from within their head. Closed back headphones also tend to produce much stronger low frequencies as compared to Open back headphones.

Low Impedance vs High Impedance

Headphones normally come in various different impedance levels, such as 8 ohms, 16 ohms and 32 ohms. The power that’s supplied by an audio source may be at varying levels because of a variety of factors including being limited because of being battery powered. Generally, as the impedance of the headphones increases, much more voltage will be required in order to drive it, and the audio loudness of headphones for a particular voltage decreases.

The determination of impedance is usually disregarded by many headphone buyers, however, the truth is it’s one of the most important factors to consider when choosing the best headphones for your particular needs. Impedance is basically just how much power the headphones can put out so that it can overcome resistance to move the headphones’ diaphragm.

Low impedance headphones (that is, less than 25 ohm), usually require little power in order to deliver high audio levels. Low Impedance headphones play well with devices which have weak amplification. These can include; mobile phones, portable music players and various other portable devices. This type of headphones can be used at home and also while jogging with your mobile phone; this is one of the reasons why most of the on-, in-, and over the ear headphones, are low impedance. Low impedance headphones are normally designed to get plugged directly in to a single (one) source, and generates sound more efficiently from a lower level input signal. These headphones tend to be much louder and much more efficient, however, they will also require a much more capable amplifier.

High impedance headphones (25 ohms and above), generally require more power in order to deliver high audio levels. As a result, they’re protected from damages caused by overloading. High impedance headphones are typically designed for studio like applications where there might be multiple phones/devices wired in parallel and receiving input signals from a single source. High impedance headphones are more tolerant of the amplifier limitations, however, they will produce less volume for a particular output level. They are also a little more durable (that is, electronically), however, they require much higher signal levels in order to produce the same level of output level of the low impedance headphones. This type of headphones can be used with a wider range of audio equipment.

Passive Headphones vs. Active Headphones

Passive (noise cancelling) headphones are made of materials which help in blocking out sound waves from the surrounding environment. The same way ear muffs soften the outside noise, so does this type of headphones employ passive noise canceling. This type of headphones are typically used for both professional mixing and monitoring, like in broadcast and recording studios, and such other applications. Passive headphones are basically designed to playback music/audio true to the actual original recording, with minimal, compression, EQ, and such other sound enhancements.

On the other hand, Active headphones use batteries in order to power the built in Digital Signal Processing (also abbreviated as DSP) technology which processes play back for a particular reason, for example, to enhance the bass and the high end. Due to the enhancement of playbacks with sharper high ends and more bass, active headphones are more popular for general listening and listening to music for pleasure. Active noise cancelling headphones are also made of materials which help in blocking out outside noise, however, they take things a step further by making their very own sound waves; the sound waves created mimic the outside noises, but are a mirror image of each other, thus cancels each other out.

Wired Headphones Vs Wireless Headphones

When choosing a pair of headphones, deciding between wireless vs. wired is among one of the most overlooked factors. Wireless headphones might be a more popular choice, however, the wired headphones also have their own set of benefits. Well, that being said, as a general rule of thumb, between wireless headphones and wired headphones, assuming a similar price between the models; the wired headphones usually offer a much better quality. Also, the audio quality may get compromised over Bluetooth.

You can opt for the wireless headphones if you are not much of an audiophile, and you tend to travel a lot. If you really don’t like getting the cables of your headphones getting tangled, or caught while listening to music/audio, then the choice should be rather simple; go for wireless headphones.

You can opt for the wired headphones if you are an audiophile, and you do not necessarily bother with the wireless options unless absolutely essential like using them when traveling, or keeping the headphones as a backup. As aforementioned, the wired headphones are way ahead in terms of output quality as compared to the wireless headphones. You will never have to worry about running out of batteries, unless you happen to opt for wired headphones which cancel noise. In addition, you will never suffer from interference from the other commonly used wireless electronic devices. However, you will need to take good care of the wired headphone cables, or they will eventually break.

Innovative radio technology keeps New Zealand’s Firefighters safe

We champion the advancement of communications within the emergency services, not only because it is an important part of their working day, but because they still have a long way to go before it is perfect. This news story comes from New Zealand and focuses on the fire service and is supplied by Motorola themselves.

Firefighters serving with New Zealand Fire Service will benefit from improved safety and communication while working in fire grounds through an innovative two-way radio solution.

The new solution from Motorola Solutions and Spark will enable the service’s 10,000 career and volunteer firefighters to stay connected to their colleagues in the field via reliable and robust voice communication.

Having attended around 73,000 incidents in the past year alone, New Zealand Fire Service needs the best tools for the job. The organisation will receive more than 4,500 new radios designed for use in the most severe fire ground environments.

A major feature of the solution is a cornerstone Motorola Solutions innovation, a remote speaker microphone that will be fully integrated within firefighters’ breathing apparatus. This will be combined with the radio’s convenient push-to-talk button, which enables firefighters to communicate easily and safely in the harshest conditions.

Paul Baxter, Chief Executive & National Commander of the New Zealand Fire Service, said,

“Communication is critical to safety on the incident ground, and much of that communication comes from the use of incident ground control (IGC) radio. That’s why we were so exacting in our requirements for these new radios.”

“The radios will help us to resolve radio interface issues with firefighters’ breathing apparatus while also delivering improved noise cancellation and battery life.”

By using a combination of single and multiband radios operating across both VHF and UHF bands, the solution aligns with the fire service’s vision of leading integrated fire and emergency services for a safer New Zealand.

“This radio solution enables us to move away from using a mix of models and frequencies and toward a nationally consistent standard that will make it easier to work with our emergency service partners,” Baxter said.

Murray Mitchell, Director ICT for the New Zealand Fire Service, said, “We wanted a solution that is safe, easy to use and doesn’t distract firefighters from their work during critical incidents.The design features incorporated in these new radios will help our firefighters work more safely and efficiently.”

Spark will provide in-country support including service management and a customer support desk.

Spark Digital CEO Tim Miles said: “Radios are life-saving tools for our emergency services, and great team communication can be the difference between a managed incident and a disaster. We are very proud to play a part in improving the on-ground experience for our Kiwi Fire Service heroes.”

Motorola Solutions Managing Director for New Zealand and Australia Steve Crutchfield said the solution drew on his company’s experience in providing tailored, mission-critical communications for public safety agencies all over the world.

“Firefighters depend on reliable and robust voice communications in emergency situations so they can concentrate on the job of protecting our communities and potentially saving lives,” Crutchfield said.

The radios are part of a five-year contract, giving New Zealand Fire Service operational and cost certainty throughout the life of the contract.

The contract also provides access provisions for related government agencies wanting to take advantage of the new radio technology.

Hytera Awarded Multi Million Dollar Contracts in Dominican Republic

Hytera are the fastest growing radio country this year, they have opened offices all over the world and are taking market share from Motorola. When you look at their Hytera earpieces, Chargers, repeaters, hand portables and base units they are of an excellent standard and quality. That is probably why the Dominican Republic was persuaded to use them for two big projects.

Hytera, a world leading solution provider of Professional Mobile Radio communications, was awarded two projects by the Ministry of the Presidency of Dominican Republic. In order to establish a nationwide emergency response network for National Emergency Care System and Security 9-1-1 (Sistema Nacional de Atención a Emergencias y Seguridad), Dominican Republic government selected TETRA (Terrestrial Trunked Radio) technology for mission critical communications, and launched two public tenders at the end of 2015; one is to cover two cities, Haina and San Cristobal, adjacent to the capital city Santo Domingo, with 5 sites and 528 terminals, while the other is to cover Santiago, the second largest city of the country, with 30 sites and 2,155 terminals.

The existing TETRA network in the Santo Domingo area was delivered also by Hytera as a result of a contract awarded by Dominican Republic’s Ministry of the Presidency in 2013. The project includes several components: the 911 system, a camera surveillance system and the communications infrastructure with its respective terminals which was awarded to Hytera. “The system in Santo Domingo offers reliable communication services to the public safety forces, and it is a very good testimony of Hytera’s solutions and supports,” said Fernando Camelo, regional director of Hytera international business.

“Dominican Republic government officials have spent a lot effort to choose the right technologies for its public safety forces. Obviously, TETRA has been widely adopted and proved. We are proud to be part of the initiative of building a united nationwide mission critical communication system for the country,” commented Ming Kam Wong, deputy general manager of Hytera international business.

The TETRA digital standard as a global open protocol provides secure, encrypted communications for mission critical operations as well as promoting a more efficient use of spectrum. More than 750 interoperability (IOP) certificates have been awarded to more than two dozen manufacturers by the TETRA + Critical Communications Association (TCCA), the governing body, globally, for the TETRA standard.

Source – http://www.businesswire.com/news/home/20160912005706/en/Hytera-Awarded-Multi-Million-Dollar-Contracts-Dominican

Those New Tracks You’€™re Listening to Are About to Sound Much Better

SO you’re walking down the street and suddenly the music kicks in, you drop to the ground and pull your earphones out of your ears! “what just happened” you think, then you realise the un-pause on the mp3 has just kicked in and you forgot to turn it down. Well people this will be a problem of the past with these earphones, Now all I need them to do is make coffee. VERY IMPORTAN You can find the original article here

What’s been your favorite set this weekend? Or the best new track you’ve shared with all of your friends? Well take that track and imagine listening to it in exactly the way your ears want you to.

Meet the Even earphones, who tune themselves to each person’s particular hearing. At just under $100, they customize the sounds they play to suit your own audio needs. They use their own EarPrint technology that measures how you hear different frequencies, then sets the earphones to play back sound specifically for each ear. As a result, the headphones give you a profile tuned to your own ear (each ear with its own profile).

One of the biggest things that originally drew me to the earphones was the fact that they are not a pre-order campaign – they have physical earbuds available now. The company, who launched in in June, has sold out batches twice thus far and are continuing to take orders on their website. Luckily, I was able to get my hands on a pair to try out as well.

I’m pretty picky about the gadgets I use for audio, as I’m constantly listening to music – digging for new sets on Soundcloud, reviewing new tracks, jamming out in my own world. Being able to plug in and listen to my own music is what allows me to focus and, as a result, I’m very specific about the type of earphones or headphones I use. That being said, I was overly ecstatic when I was handed a pair of Even earphones to try out.

First, their appearance: the cords are a high-quality string that have a smooth look and feel. The buds look sleek, with a simple black-and-white color scheme – one black, one white, with the EarPrint device hanging at the middle of the cord, meant to dangle at your chest. They don’t tangle easily, which makes them easier to carry without having to worry about dealing with knots. They’re the type of earphones I wouldn’t mind wearing out in public.

Next: the sound test. This is where we meet “Sarah,” the soothing female voice that guides you through a number of sounds to test where your hearing level is at. This test was very straightforward – Sarah literally starts by saying “Hi, this is really easy” – and felt very conversational as she talked you through each noise. Five pieces of music are played for each ear, and you’re required to hit the button once you hear the sound. Though the process takes a little bit longer than I’d like, it’s seamless.

Overall quality of the listening experience was great. I switched between my Bose over-ear headphones and the Even earphones to test the difference in sound quality and worked to try a few subgenres of electronic music to see how each would sound between both pairs. I started off by listening to Louis The Child’s set from Lollapalooza this year and instantly found that the vocals were much more emphasized than in my Bose headphones. Next, I moved on to Mikey Lion’s live set from Desert Hearts 2016 and loved the emphasis on the bass I was hearing – the Even earphones made it much more of an all-around experience. I then switched over to Troyboi’s tracks Do You? and O.G. to continue to test this bass theory and, again, Even delivered.

As my hearing is likely damaged based on the amount of festivals and shows I’ve attended over my lifetime, it was much appreciated that the earphones were able to pick up on the frequencies I have more trouble hearing to create the full experience tracks deserve. Interestingly enough, every time I switched back to my Bose headphones to compare, I had to turn the volume down because it came at full blast and was overwhelming – and, when I did, the clarity between vocals and bass was lost. All in all, these babies pack a punch with their sound quality when it comes to electronic music.


It’s refreshing that these earphones don’t require using an app, since that seems so commonplace nowadays. All of the information that goes into your profile is saved in the little box hanging onto the string, so you can plug them into any device – phone, laptop, iPod, whatever you want – and still have your own profile saved. I found this extremely helpful, as it meant that I don’t have to re-adjust my volume based on what device I’m using. Beyond that, it’s a refreshing change from listening to sets with friends and having to change the volume based on everyone’s sensitivities. It makes listening much simpler and, quite frankly, electronic music better. How could you say no to a custom-made, surround-sound system in your own ears?

To get you started, here a few sets, old and new, you may enjoy listening to in the earphones (ok, to be fair, these are sets that I would want to hear in them):

Ericsson first to deliver 5G NR radio

We are seeing a new era in communications at the moment, the move from tetra and RF to the mobile network. The uk’s emergency services will be moved over to EE’s ESN system slowly until 2020 using Motorola kit designed particularly for the technology. The natural evolution is 5G, which we won’t see for many years, but Ericsson have taken the baton and are running with it.

  • World’s first commercial 5G New Radio (NR) radio for massive MIMO and Multi-user MIMO coming in 2017
  • New additions to Ericsson Radio System address key requirements of 5G, in today’s networks
  • Pioneering Industrialized Network Rollout Services solution facilitates complete rollout from configuration to verification in a single visit

Ericsson (NASDAQ:ERIC) is commercializing the world’s first 5G NR radio for massive MIMO, with the first deployments coming in 2017. Together with the Ericsson 5G Plug-Ins announced in June and Ericsson’s already commercially available Radio System Baseband 5216, which currently powers Ericsson’s award-winning Radio Test Bed, Ericsson is first to deliver all components of a 5G access network.

Tom Keathley, senior vice president, Wireless Network Architecture and Design, AT&T, says: “As we accelerate toward 5G, it’s beneficial to have a flexible radio platform that can be deployed not only for LTE, but also versions of future 5G NR standards.”

AIR 6468 combines advanced antennas with a large number of steerable ports to enable 5G technologies of beamforming, Massive MIMO and — building on that — Multi-user MIMO, initialized as MU-MIMO. These capabilities improve user experience while enhancing the capacity and coverage of the network and reducing interference. The new radio provides LTE support as well, so it is applicable in today’s networks.

Huang Yuhong, Deputy Head, China Mobile Research Institute (CMRI), says: “Massive-MIMO, also known as 3D MIMO, is an important milestone in China Mobile’s technology roadmap from 4G to 5G. We are very happy that Ericsson’s new radio product is coming to market soon to meet our needs and enable us to integrate 5G technologies into our existing networks.”

A host of new additions to the Ericsson Radio System are also coming that address key 5G requirements, in today’s networks.

Daniel Staub, Head of Joint Mobile Group, Swisscom, says: “On the road to 5G, we will continue to invest in LTE advancements that will become part of our 5G networks. For us, it is key that Ericsson has chosen to focus on advances that will support us in this evolution. These enhancements will further improve the customer experience.”

Additional new Ericsson Radio System gear addresses 5G concepts

  • Three new radios support Gigabit speeds for LTE and provide further flexibility in design: Radio 4407 and Radio 4412 enable 4×4 MIMO in one radio unit for FDD and TDD mode respectively, and Radio 8808 for advanced TDD beamforming applications
  • Addressing both the need for unlicensed spectrum options and the growing emphasis on small cells is the Radio 2205, a micro solution on unlicensed spectrum that is fully integrated in Ericsson Radio System, using the same baseband and network management
  • Two new baseband units support the growing need for densification: the outdoor micro Baseband 6502 and macro Baseband 6303 with Ericsson Rail System mounting for flexible site builds
  • Addressing interference issues in dense builds, Baseband P614 enables new band activation on challenging sites by mitigating Passive Inter Modulation, referred to as PIM mitigation, from static and dynamic sources both inside and outside the antenna system
  • Spectrum optimization is a growing need and Uplink Spectrum Analyzer is an Ericsson-unique software solution to remotely identify external interference without the need for costly measurement equipment and site visits
  • Exclusive to Ericsson is instant power sharing, used in the wideband Radio 2242. This capability allows power to be instantly shared between carriers, standards and bands, optimizing the use of radio resources
  • Cloud RAN will be an important 5G network architecture and Baseband C608 provides high-performance switching in Elastic RAN deployments

Peter Jarich, Vice President, Consumer and Infrastructure Services, Current Analysis, says: “Mobile operators, today, are clearly focused on the race to 5G commercialization, while also continuing to invest in their existing LTE networks. With a new 5G radio and LTE offerings which echo key 5G concepts – small cells, licensed-unlicensed band combinations, Cloud RAN, network densification, spectrum optimization – Ericsson’s new portfolio additions and Ericsson Radio System innovations provide a compelling way forward.”

To support new network builds, Ericsson has created the industry’s first Industrialized Network Rollout Services solution. The Network Deployment Delivery Platform coupled with Ericsson’s pioneering process facilitates the complete configuration, installation, integration, shakedown and handover of a fully verified site, ready in a single site visit.

Communication news website

A giant solar storm nearly triggered a nuclear war in 1967

We all know how important radio communications are and at a time before the internet and even digital communications, governments relied on RF communications that were susceptible to the suns solar storms, if you add that to the cold war nuclear tensions then we could all be living in holes now.

Cold War history is rife with close calls that nearly led to nuclear holocaust.

In September 1983, for example, sunlight reflecting off a patch of clouds fooled a Soviet missile-warning system into detecting the launch of five US intercontinental ballistic missiles that never were. A wary colonel in a bunker ignored the alarm on a 50/50 hunch.

Two months later, US forces staged “Able Archer 83” — a massive nuclear-strike drill on the doorstep of the USSR. Soviet commanders panicked at the show of force and nearly bathed America in thermonuclear energy. Once again, an act of human doubt saved the planet.

Now scientists have one more hair-raising event to add to the books: The “Great Storm” of May 1967.

“The storm made its initial mark with a colossal solar radio burst causing radio interference … and near-simultaneous disruptions of dayside radio communication,” a group of atmospheric scientists and military weather service personnel wrote in a new study, published August 9 in the journalSpace Weather.

Hours later, high frequency communications dropped out near US military installations in and near the Arctic — one of the closest places to station nuclear weapons and launch them at a Cold War-era Soviet Union.

“Such an intense, never-before-observed solar radio burst was interpreted as jamming,” the study authors wrote. “Cold War military commanders viewed full scale jamming of surveillance sensors as a potential act of war.”

A ‘Great Storm’

Earth’s magnetic field protects life on the planet by corralling the sun’s high-energy particles toward the planet’s polar regions.

If the sun happens to launch a cloud of solar particles directly toward Earth during a violent outburst, called a coronal mass ejection, it can trigger powerful geomagnetic storms.

This not only leads to beautiful auroras, but can also scramble wireless communications and disrupt radar systems.

While The Washington Post wrote up a story about the storm as “City Gets Rare Look at Northern Lights,” top US military commanders sounded the alarms in secret.

The Air Weather Service (AWS) — a relatively new branch of the Air Force — had warned military leadership about the possibility of a solar storm, but US commanders believed the Soviet forces were jamming NORAD systems designed to detect threatening planes and missiles.

As the Strategic Air Command warmed up the engines of bombers and taxied toward the runway, the decision to go airborne may have been kicked all the way up to the “highest levels of government,” possibly involving President Lyndon B. Johnson.

“Just in time, military space weather forecasters conveyed information about the solar storm’s potential to disrupt radar and radio communications,” according to a press release from the American Geophysical Union. “The planes remained on the ground and the U.S. avoided a potential nuclear weapon exchange with the Soviet Union.”

And this all happened at the peak of nuclear armament — when a record 31,255 nuclear weapons were deployed around the world. (Today there are roughly 7,200 nuclear armaments at hand.)

“Had it not been for the fact that we had invested very early on in solar and geomagnetic storm observations and forecasting, the impact [of the storm] likely would have been much greater,” study leader and UCAR atmospheric scientist Delores Knipp said in the release.

After the near miss, the researchers say the military learned to listen to its space weather forecasters, improve its abilities to see another looming “Great Storm,” and avert the first and perhaps final global nuclear exchange.

 

Find the original source here